On the Importance of Secure Coding

Hagai Bar-El

info@hbarel.com

Abstract

Secure coding (secure programming) is a field that is
gaining a lot of attention. Flaws are constantly dis-
covered in a wide range of known server applications.
These flaws are not flaws emerging from an insecure
high-level design of the applications but are flaws that
were introduced at the source code level and that are
a result of careless programming. Such flaws can be
exploits of buffer overflows or the result of lacking
input validation routines. In this document I will pro-
vide a brief definition of secure coding and of secure
programs and will try to assess the reasons for the
need to focus efforts on this aspect of information
security.

Definition of Secure Coding

Secure coding can be most intuitively defined as the
act of writing secure programs. Secure programs are
programs that cannot be manipulated (other than by
changing the software program object itself) into per-
forming illegal operations. Illegal operations, for the
purpose of this discussion, are operations that com-
promise security and that the program was not in-
tended to perform according to its design, or was not
intended to perform in the circumstances in which it
was manipulated into performing. It is worth mention-
ing that programs that have bugs in them are not
necessarily insecure programs according to this defini-
tion. Buggy programs may be insecure if their bugs
allow an adversary to perform illegal operations ac-
cording to their abovementioned definition. If a bug
can cause the program to perform some unpredicted
operation but this operation has no significance in
terms of an information security compromise, then the
program is not necessarily considered as insecure.

Why is Secure Coding Important?

Application design is multi-layered of its nature.
Every application that is of a minimal complexity and
above requires design to be done in multiple layers. A
protocol implementation, for example, requires a de-
sign for the protocol itself, a design of top-level func-
tions and interfaces, a detailed design of the various
functions implementation, and the design of the pro-
gram code itself. The coding itself can be considered
as the bottom layer of the application design.

For security to be complete it requires attention in
each of the design stages. A secure protocol imple-
mentation first needs to be designed securely as a
protocol in the protocol definition level, its implemen-
tation is then required to be designed with security in

mind so not to introduce implementation-specific vul-
nerabilities. Within the implementation design, the
functions need to be defined so security issues do not
fall in between the cracks and so the security roles are
well defined and well assigned among the components
of the implementation. Further down the implementa-
tion chain, the source code itself must be designed
securely so not to introduce flaws resulting from bad
assumptions being made by the programmer or from
careless use of functions and resources. Secure coding
is nothing but a link in the chain of design security,
which is the lowest one in the implementation’s top-
down model. As often said, a chain is as secure as its
weakest link. As a result, the security of this low-level
link shall not fall below the security of any link above
it so not to compromise the security level of the entire
application.

One parameter that hardens the keeping of the lowest
level as secure as the higher levels is that security is
harder to assure on the lower levels than it is on the
higher ones. Put in different words, security flaws are
harder to spot when they are in lower levels of the
design. The closer we get to the bit level the lower is
the probability of flaw discovery. This is for several
reasons: First, the skill of most security analysts is
based heavily on design-levels, somewhat justified by
the wrong perception that security is an issue of the
“top layers”. Indeed, security design needs to start
from the very top, but it shall definitely not end there.
Security analysts often feel closer to Data Flow Dia-
grams and to high-level interface definitions than to C
language instructions or to op-codes. The second rea-
son is that properly assuring the security of source
code requires a more-or-less manual review of high
portions of the source code. Some code scanners exist
to make this task less time consuming by flagging
problematic function calls. Still, no matter how one
looks at it, this is very time consuming task, and this
time is often far from pleasant. A complete security
review on the source code, which may require a lot of
man-hours, is likely to eventually add to the overall
cost of the product. Therefore, source code review is
seldom done and even more seldom done correctly.
These facts naturally lead to flaws that are introduced
in the lowest layer of the implementation and that are
never discovered by the developer.

Unfortunately, too often are these flaws discovered by
the wrong people leading to the publication of exploit
codes. Exploit codes may lead almost any sort of ap-
plication on which they run to perform almost any
operation. Web server applications got the most atten-
tion lately and exploits were written for manipulating
them into displaying sensitive files, into invoking shells
and into running arbitrary code.

On the Importance of Secure Coding



Causes Of Exploitable Flaws

Regular programming bugs can come from many
sources and can be caused by a large set of common
mistakes. Exploitable security flaws in programs, on
the other hand, usually originate from one of several
common habits of short-seeing. The purpose of this
article is not to present the causes of software flaws
and therefore this chapter is brief and shall be seen as
background or introductory information only.

Most commonly, assumptions are made regarding the
type of input that the program receives from an ex-
ternal source and often also regarding its length.
Buffer overflows are the result of many programming
flaws and are caused when the application attempts to
store information it received from an external source
in pre-allocated memory space that is not large
enough. In web programming environments web serv-
ers are often lead into performing illegal operations by
being sent well-crafted strings that were unpredicted
by the programmer but yet interpretable by the
server. Race condition flaws result from the program-
mer’s assumption that a state that was verified at
some point still holds at a later moment when opera-
tions based on that state are performed.

Many of the flaws originate from the lack of safety
nets provided by modern computing platforms. The
compilers are providing the programmer with com-
plete flexibility in use of memory and other resources,
trusting him to use this capability with care. The
programmer, on the other hand, is assuming the com-
piler and the environment to provide invisible safety
nets that will eliminate problems caused when this
flexibility is applied in circumstances that are unex-
pected at the stage of programming. As a brief exam-
ple: The C language compilers provide the running
application with flexible access to the memory space,
including access to memory addresses that were not
formally allocated for the specific purpose beforehand.
The programmer writing a function that receives a
string from the keyboard and placing it in a limited
memory buffer assumes the environment will not al-
low contents of the string to overflow the allocated
space if too long. This assumption, in different flavors,
is the main cause of buffer overflows.

Changing programming habits and verifying that the
source code makes no assumptions on the inputs it
receives is the only way to solve this problem. Com-
pilers cannot embed automatic runtime checks with-
out a notable loss of performance. Similarly, inter-
preter modules cannot be programmed to know and
react to special malicious strings of data that they
may get at runtime, also because “malicious” is a
context-sensitive property. Moreover, some flaws re-
sult from the interaction between independent com-
ponents. In these cases an automated “filtering” of
risky situations is completely inapplicable.

Security Through Obscurity

“Security Through Obscurity” is the approach by
which an applications security level is considered to be

increased due to the non-disclosure of its internals. In
common wording it means that an application is se-
cure if the attacker does not have the necessary infor-
mation about how it works. A lot was said and writ-
ten about this approach and mainly about the reasons
it is so wrong.

No application may rely its security on the fact that
the adversary does not know how the application runs.
Briefly, the hidden nature of the applications code
cannot be trusted for assuring the security of the ap-
plication. The first reason for that is that the fact that
the source code is not provided with the application
does not mean the internal structure of the application
cannot be discovered. The source code may be re-
vealed at some future time for this or that reason, or
leaked. Even if the source code is forever kept safe,
reverse engineering is possible and detailed analysis of
the machine code can teach an adversary a lot about
the functions, structure, input validation schemes and
other components of the program. One must remem-
ber that in order for an adversary to be able to attack
an implementation he/she does not need to have a
complete and accurate dump of the source code. Of-
ten, a short glimpse at a small block of the machine
code can reveal enough information for the launch of a
successful attack. Generally speaking, according to a
known lemma the secrecy of any software component
cannot be assured against the owner of the machine on
which the software is run (true for common computing
platforms).

Security Through Obscurity can provide an additional
layer of security for system that are secure otherwise,
but should never be trusted as the only level of de-
fense.

Summary

Secure coding is nothing but an additional link in the
chain of security measures that are to be taken in the
various stages of application development. However, it
does have several unique properties that make it
slightly different than the other security considerations
that are taken in the higher levels of the design. Secu-
rity of source code is harder to assure, as source code
is harder to inspect, for its being written in a non-
human language, and as the vulnerabilities are harder
to detect and their detection requires different skills
than the skills most information security analysts
have. In order to assure the security of this level of the
development process, the most effective way is
through the adoption of secure programming practices
and through the adequate training of programmers.
Source code inspection is also necessary as an addi-
tional measure of flaw detection. Without both the
initial awareness of the source code programmers and
the code review by skillful analysts, the task of assur-
ing the robustness of an application code against
skilled attackers with a high motivation and a lot of
patience is close to impossible.

On the Importance of Secure Coding



